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The Rigorous Analysis of Cascaded Step
Discontinuities in Microstrip

C.J. RAILTON AND T. ROZZI, SENIOR MEMBER, IEEE

Abstract — A rigorous analysis of boxed microstrip single step discon-
tinuities and cascades of strongly coupled discontinuities is presented. Use
is made of a variational formulation involving the expansion of the
transverse E field at the step in terms of suitable basis functions. Strongly
coupled steps are analyzed using the concept of “localized” and “accessi-
ble” modes and making use of a network model. The method is applied to a
five-section low-pass filter.

I. INTRODUCTION

T IS BECOMING increasingly important to be able to

predict accurately the behavior of microstrip circuits
before manufacture. This is especially true in the design of
microwave integrated circuits where adjustments after
fabrication are very difficult or impossible to carry out.

The currently available methods for use in the com-
puter-aided design of microwave components, e.g. [1], [2]
rely heavily on quasi-static approximations which are only
correct in the limit of low frequency and which suffer
significant error as the frequency increases.

Cascades of step discontinuities constitute a basic con-
figuration for the design of filters and impedance trans-
formers, and it is to these in particular that the work
described herein is addressed. Methods by which a more
accurate frequency-dependent solution have previously
been attempted include the equivalent waveguide model
(e.g. [3]), the transmission line matrix method (e.g. [4]), and
the finite element method. The method of mode matching
has been applied directly to finline [5] and microstrip [19]
and also to the parallel-plate waveguide model [6], al-
though it is well known that this method may suffer from
the “relative convergence” problem [7].

More recently a rigorous formulation of the single step
discontinuity in microstrip, such as that shown in Fig. 1,
has been published [8] and a wide variety of results pre-
sented. In this method, the portion of microstrip including
the step is enclosed by electric walls to form a resonant
cavity. By varying the length of the cavity and evaluating
the resonant frequencies, the S parameters of the step can
be obtained. While this method gives good results for the
single step, it does not lend itself readily to the treatment
of cascades of strongly coupled discontinuities. This is due
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Fig. 1. (a) Microstrip cross section. (b) Plan of step discontinuity.

to the fact that the amount of computation becomes very
large when a complicated metallization pattern is analyzed.

The formulation presented herein makes use of varia-
tional principles for the generalized S parameters of a
single step discontinuity. This lends itself to the treatment
of strongly interacting discontinuities by means of the
concept of accessible and localized modes [9]-[11]. In this
approach the higher order modes excited at the discontinu-
ity are treated according to their effect at the neighboring
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discontinuities. If they have a significant effect, then they
are deemed to be “accessible”; otherwise they are deemed
to be “localized.” Since there is no localized mode incident
at a discontinuity, these scattered modes are effectively
terminated in their characteristic impedances. Each discon-
tinuity is treated as a multiport device, each port corre-
sponding to an accessible mode. Likewise the microstrip
section which connects neighboring discontinuities is mod-
eled as a set of transmission lines, each carrying one
accessible mode. In this way the coupling between the
discontinuities can be accurately accounted for.

The single step discontinuity is analyzed using the
Galerkin variational method. The E field at the discon-
tinuity is expanded in the set of microstrip modes at each
side of the step and also in a suitable set of vector basis
functions appropriate to the step itself.

In order to analyze a microstrip discontinuity in this
way, it is necessary to calculate the field patterns of a large
number of microstrip modes, typically 100. An efficient
method for achieving this has been presented [12], [13].

II. THE FORMULATION OF THE SINGLE STEP
DISCONTINUITY

Most formulations of the microstrip step discontinuity
make use of the equivalent circuit shown in Fig. 2, where
the element values are evaluated by quasi-static approxi-
mation. This model, however, suffers from the disad-
vantages that it is only correct in the limit of low frequency,
and that as it stands cannot be used to model strongly
coupled steps.

The formulation presented here uses the model shown in
Fig. 3. The step is represented by a multiport device with
frequency-dependent S parameters. Each port on the
model corresponds to an accessible mode, that is, a mode
which does not decay to negligible levels by the time it
reaches the next discontinuity. Combination of these S
matrices, by standard network methods, makes possible
the characterization of cascades of strongly coupled dis-
continuities (see Fig. 4). In principle, the accuracy of the
model can be systematically improved by increasing the
number of modes which are treated as accessible. In prac-
tice, however, as the number of modes deemed to be
accessible is increased, the increase in numerical error
becomes greater than the improvement from the formally
more accurate representation.

Referring to the plan of Fig. 1, we start from the
continuity equations for the transverse E and H fields,
expanded in terms of the transverse modal fields at either
side of the step:

T (af + BO)E® = X (a® + 5P)E@ = E(r) (1)
n n
T (e = b0)HO = T (af ~ 52V HO +2% T (2)

n

where

E(r) is the transverse electric field at the discontinuity;
Z is the unit vector in the z direction;
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J is the current at the step;

the coefficients a represent the incident wave ampli-
tudes;

the coefficients b represent the scattered wave ampli-
tudes;

the superscripts (1) and (2) refer to the regions defined
in Fig. 1.

Note that due to the hybrid nature of the modes, there is
no simple relationship between E and H transverse. Con-
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sequently, we specify the E field and the H ficld sep-
arately. This contrasts with the case of simple LSE/LSM
modes, where it is possible to define a simple scalar wave
impedance linking E and H transverse.
We normalize the modes so that

<En’ Hm> = Smn (3)

where
0,,=0

and the inner product is defined as

m+n

[E,xH,:zds (4)

with the integral taken over the box cross sections.
By taking the inner products of each side of (1) with
each of the microstrip modes in turn we get

(E,H)

1

a®d+pM = ___<E(1) 2O (5)
(E, H®)

Q) - p =
a,’ +b, (E® HO)" (6)
To proceed we choose the inputs to the ports to satisfy the
following conditions;

aV=1
a’=0 pFEt (7)
a®=0.

Substituting into (5) and (6) gives

(E.H)

1+ M= ——
<E(1) H(1)>

=1+,

(3)

HO
p» = _<_E’_ll -
D 1 :
z (EIf ,Hp()> »

pO = (EHD) ~g
4 <E(2) H(2)> qt?

©)

g=a+p (10)
where a is the number of accessible modes in region (1).
We now substitute these expressions into (2):

(E, H?)

T L g
(ED, HOY " H,

(1-40)HO - ¥

(E,H?)
Tl O
~ (E®, H<2)>H (11)
Therefore
E.H® H®
2HV =Y (E B Oy (£, >H‘2) (12)

. (ED,HY) » (EP, H)

We now take inner products of both sides of this equa-
tion with E, yielding

(E,H®)=(E,G,E) (13)
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where the kernel g of the integtal operator G is given by

2500, = § [ B BPAE)
g(r,r’)=
ST E DT B D

(14)

Making use of (8)—(10) and the normalization given by (3),
we get the following expressions for the elements of the S
matrix:

(E,H )E,H®) " (
where
1
Rpt=SPt_8pt, p<a
R  =—, p>a.
pt Spt

We expand the unknown function for the electric field
at the discontinuity in terms of a complete set of two-
dimensional vector basis functions which satisfy the
boundary conditions:

(e o]
E= ) co,(x,y). (17)
g=1
Substituting these expressions into (15) and taking partial

derivatives of each side of the equation with respect to ¢,
(1 < u < o0), we obtain the following:

<E H(1)><E H(1)> R

u

+ Z q<¢u5 H(1)><¢q" H(1)>Rpt

=2.c(0,G,9,). (18)

Substituting for R ,, we get

(o B = Zego, 6200

My, e8] IRy,
+<E,Hp WE, H, >T=O (19)

From (12) we get

<¢u7 Ht(1)> = <¢u’ G’ E)
which, if substituted into (19), yields

(20)

pt
—L=9
dc

u

(&, H) = Y ¢,($,, G, d,).
q

(21)
(22)

The first result shows that the expressions for the elements
of the S matrix are stationary with respect to small changes
in the trial field function and hence we have a variational
principle. The second result has the form of an infinite set
of simultaneous equations from which the coefficients ¢,
may be calculated. Hence the field may be found from
(17), and the left half of the § matrix can be found from
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(8)—(10). The other half of the S matrix is found by means
of a similar analysis with inputs to the ports satisfying the
conditions

a’=0
a®=1 pFL
aP=0

instead of those specified in (7).

We note that (22) is the same as would have been
obtained if Galerkin’s method had been applied to (12).
This is a consequence of the fact that the operator G is
self-adjoint, which in turn is a consequence of the law of
conservation of energy.

In practice, of course, we approximate the field with a
small number of basis functions, chosen to well approxi-
mate the actual field at the discontinuity. This leads to an
efficient and accurate formulation. The form of the chosen
basis functions is discussed later.

III. CHOICE OF BASIS FUNCTIONS FOR THE STEP

In (17) we made use of a set of basis functions in which
to expand the transverse E field at the step. It is crucial
that a good choice be made here; otherwise the result will
be inaccurate. It is this aspect of Galerkin’s method, and
other methods of a similar nature, which has attracted
criticism [14]. Where it is possible, from physical consider-
ations, to know a priori the important characteristics of
the unknown function, then basis functions can be chosen
which ensure fast convergence. Such a procedure has been
used to good effect for the solution of the modes of
uniform microstrip [12] and finline [15] where the singular-
ity of the fields at the edge of the infinitely thin strip or fin
are known exactly.

Unfortunately, for the case of the step discontinuity, it is
not obvious what the form of the fields will be. There is no
simply applicable condition, corresponding to the edge
condition at a wedge, which can be used. Possible ways of
deriving a suitable set of basis functions may involve
numerical methods to solve the static problem [16} or
making the order of the singularity at the corner of the
step a variable with respect to which we can extremize the
variational expression [17].

Various sets of basis functions which satisfy the
boundary conditions, but which incorporate no beliefs
concerning the form of the field at the step, have been
tried. In most cases, however, the result has been a very
ill-conditioned set of equations (22) from which no satis-
factory answer could be obtained.

A simple set of basis functions which can be used is the
wave patterns of E, and E, of the modes of the microstrip
containing the wider of the two strips. These functions
meet the boundary conditions, but do not have the correct
singularity at the corner. From physical considerations,
however, it is likely that the field at the step will be similar
to the field in the wider continuous microstrip. The ratio
of E, to E, is left as a parameter to be found during the
solution of the variational expression. If this were not
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done, then the higher order modes of the wider microstrip
excited by the discontinuity would be orthogonal to the
basis functions and therefore would not contribute to the
sum in (12). Fig. 5 shows the results of calculating the
phase of S12 for a step discontinuity using different num-
bers of basis functions at frequencies up to 12 GHz. It can
be seen that convergence is achieved at various frequencies
when nine basis functions are used and the ratio of the
strip widths is 4:1. While not ideal, this result means that
only a moderately small matrix need be handled. This
contrasts with the large matrices which result from em-
ploying mode matching methods such as [19].

In addition, numerical experiments have been carried
out using the modes of the wider strip multiplied by an
expression of the form

(i
2
where a is the box width, w is the wider strip width, and p
is a parameter which is chosen to achieve best conver-
gence. The multiplication was carried out by taking the
convolution of the Fourier transform of the above expres-
sion, expressed in terms of Bessel functions, with the
previously calculated Fourier components of the modal
fields. By this means it was hoped to improve on the
results obtained by using the unchanged microstrip modes
as basis functions by bringing the edge behavior close to
what it really was. Results for various values of u were
obtained but the convergence showed no improvement
over that achieved using the unmodified modes.

I

IV. CONVERGENCE OF THE GREEN’S FUNCTION

The Green’s function, (14), is built up as an infinite sum
of the eigenmodes of the continuous microstrip. In prac-
tice, of course, it is necessary to truncate this sum after a
finite number of terms. The effect of such a truncation on
the calculated value of the equivalent circuit impedance
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24, defined in Section V1, is shown in Fig. 6. It can be seen
here that for accurate results it is necessary to take into
account about 100 eigenmodes cach side of the step.
Examination of the geometry shows that this should be
expected. We are essentially dealing with three complete
sets of functions. Any transverse electric field pattern
which satisfies the boundary conditions may be expressed
as a linear combination of any of these sets. These are the
microstrip modes for the continuous microstrip each side
of the step and the basis functions chosen to express the
field at the step itself. Each of these sets contains singular
functions where the singularities may occur at different
places and have different strengths in each set. Clearly if
we are to express a singular function as a linear combina-
tion of a set of singular functions, when the singularities

do not coincide, we need many terms in order to obtain an
accurate representation. Thus in expressing the Green’s
function in terms of a summation of eigenmodes, many
eigenmodes must be included.

It is interesting to compare the situation existing here to
that of the analysis of uniform microstrip [12]. In the latter
case we also have a Green’s function expressed as a sum of
eigenmodes; in this case they are the eigenmodes of a
slab-loaded waveguide. Unlike the present case these func-
tions are not singular, but the microstrip modes, which are
to be expressed as a linear combination of them, do
contain a singularity. In that form, it would also be neces-
sary to take a large number of terms in order to achieve
convergence. It was possible, however, in that case to find
an asymptotic form of the expression to be summed, with
a consequent decrease in computer time. In the present
case, however, no such asymptotic form has so far been
found.

V. RESULTS FOR THE SINGLE STEP DISCONTINUITY

The S parametets for a step discontinuity calculated
using the formulation described above are shown in Figs. 7
and 8. These show the modulus and the phase, respec-
tively. Also shown, in Figs. 7(b) and &(b), are the rigorous
results read from the graphs presented in [8] and results
using published quasi-static approximations [1]. It can be
seen that at low frequencies, the agreement between rigor-
ous methods and the quasi-static approximation is good,
especially for the transmission coefficient. However as the
frequency rises and we approach the cutoff frequency of
the second mode, there is considerable deviation.

In Fig. 9 we see the coupling between the dominant
mode and the first two higher order modes at the step. It
can be seen that the coupling increases almost linearly with
frequency so long as we are well below the cutoff of the
higher order modes.
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V1. NETWORK FORMULATION OF MULTIPLE

DISCONTINUITIES

In the conventional equivalent circuit model for a step
discontinuity, the parasitic effects are represented by two
series inductors and a shunt capacitor (see Fig. 2). This
model has the following limitations.

First, the validity of the equivalent circuit presupposes
that a characteristic impedance can be defined for micro-
strip. Because of the hybrid nature of the microstrip modes,
such a definition is unambiguous only at zero frequency.

Second, the values of the components are frequency
dependent. This fact limits the usefulness of a simple
equivalent circuit.

Third, no account is taken of the existence of higher
order modes excited by the discontinuity other than as a
means of energy storage. If we have closely spaced discon-
tinuities, then the effect of these modes will be significant.

We can circumvent the first difficulty by modeling the
longitudinal behavior of the transverse modal fields, i.e.,
the scalar amplitudes of E, and H,, of each mode by
means of the amplitudes of the voltage V" and current I of
an ideal transmission line having scalar characteristic im-
pedance, say unity, and with propagation constant identi-
cal to that of the microstrip mode. The effect of an isolated
step discontinuity can then be modeled by means of an
equivalent circuit, as in Fig. 2, between transmission lines
representing the fundamental mode of microstrip at either
side of the step. The second problem is a difficult one and
is as yet unsolved.

In order to overcome the third difficulty, it is possible to
model the discontinuity as a multiport device with in-built
storage elements. Such a model has previously been used
for cascades of interacting irises and steps in rectangular
waveguide [9]-[11].

The basic model is shown in Fig. 3. We split the mode
spectrum of the microstrip into “accessible” and “local-
ized” modes. The former are considered to have a signifi-
cant amplitude at the next discontinuity. These include all
the propagating modes and the first few evanescent modes.
The localized modes are considered to have decayed to
negligible amplitude at the next discontinuity. The distinc-
tion is obviously dependent on the geometry, the frequency
of the operation, and the accuracy required.

For each accessible mode there exists an input/output
port. The microstrip which connects successive discontinu-
ities is then modeled as a set of transmission lines, one for
each transported mode, each with its own propagation
coefficient. The localized modes which are excited propa-
gate outwards from the discontinuity and do not see any
reflection; therefore they can be treated as being terminated
with a matched termination.

The complete cascade can therefore be treated as a
cascade of multiport networks connected as shown in Fig,
4. The first and last of these networks have all but the
dominant modes terminated in their characteristic imped-
ances. Once the S matrices for each discontinuity are
known and the propagation coefficients of the intervening
microstrip for each accessible’ mode is known, then the
overall S matrix can be calculated using standard methods

(e.g. [1])-

VII. RESULTS FOR THE DOUBLE STEP

DISCONTINUITY

The above method has been applied to the double step
discontinuity, the plan of which is shown in Fig. 10. For
given frequencies of 3 GHz and 7 GHz the input VSWR
was calculated as a function of the length of the step. The
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results aré shown in Figs. 10 and 11. Here we have the
results of taking just one accessible mode, i.e., assuming
the steps have negligible coupling, and the results of taking
two accessible modes. In addition the results using quasi-
static formulas are shown. It can be seen that at 7 GHz the
calculated resonant length is noticeably changed when the
second accessible mode is included, thus indicating a sig-
nificant amount of coupling. At 3 GHz the results are
almost indistinguishable, implying that there is no signifi-
cant coupling. The quasi-static results are significantly
different in both cases.

VIII. APPLICATION TO A Low-PASS FILTER

A five-section low-pass filter made up of a cascade of
microstrip step discontinuities lias been analyzed using the
rigorous method, in order to see the effect of including
more than one accessible mode in the model. The geome-
try of the filter is shown in Fig. 12. It has been designed
using 50 £ input and output lines, 25 & capacitive lines,
and 90 & inductive lines. The cutoff frequency is 10 GHz.
In Fig. 12 we see the frequency response calculated by
taking one and two accessible modes into account. It can
be seen that, at high frequencies, the effect of the second
accessible mode becomes noticeable.

In order to produce Fig. 12, the steps were characterized
at 1 GHz frequency intervals and the parameters at inter-
vening frequencies were calculated using interpolation. This
produces accurate results except in the region of the cutoff
of the higher order modes, where the parameters and their
derivatives vary rapidly.

It is noted that theré are only two different step discon-
tinuities contained in the filter, a step from 50 & to 25 Q
and a step from 25 © to 90 Q. Once these steps have been
characterized, optimization of the filter consists of varying
only the lengths of the lines between each step. Thus for
each iteration of the optimization procedure, the only
calculations involved are those of the S parameters of the
lines and the resulting network problem. The computation-
ally more expensive rigorous analysis of the step need not
be repeated.

IX. CONCLUSIONS

A variational method for the analysis of single step
discontinuities in microstrip has been presented. By treat-
ing such a step as a multiport network, we can take
account of the scattered higher order modes when they are
of significant amplitude at a neighboring discontinuity.
Thus we are able to analyze cascades of closely spaced step
discontinuities. The results for the single step are in agree-
ment with quasi-static formulas at low frequency. Results
for the VSWR of a double step discontinuity and the
frequency response of a low-pass filter have been pre-
sented which show the effect of including the scattered
higher ordei modes.
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