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The Rigorous Analysis of Cascaded
Discontinuities in Microstrip

C. J. RAILTON AND T. ROZZI, SENIOR MEMBER, IEEE

Abstract —A rigorous analysis of boxed microstrip single step discon-

tinuities and cascades of strongly coupled discontinuities is presented. Use
is made of a variational formulation involving the expansion of the

transverse E field at the step in terms of suitable basis functions. Strongly

coupled steps are analyzed using the concept of “localized” and “accessi-

ble” modes and makhtg use of a network model. The method is applied to a

five-section low-pass filter.

I. INTRODUCTION

I T IS BECOMING increasingly important to be able to

predict accurately the behavior of microstrip circuits

before manufacture. This is especially true in the design of

microwave integrated circuits where adjustments after

fabrication are very difficult or impossible to carry out.

The currently available methods for use in the com-

puter-aided design of microwave components, e.g. [1], [2]

rely heavily on quasi-static approximations which are only

correct in the limit of low frequency and which suffer

significant error as the frequency increases.

Cascades of step discontinuities constitute a basic con-

figuration for the design of filters and impedance trans-

formers, and it is to these in particular that the work

described herein is addressed. Methods by which a more

accurate frequency-dependent solution have previously

been attempted include the equivalent waveguide model

(e.g. [3]), the transmission line matrix method (e.g. [4]), and

the finite element method. The method of mode matching

has been applied directly to finline [5] and microstrip [19]

and also to the parallel-plate waveguide model [6], al-

though it is well known that this method may suffer from

the “relative convergence” problem [7].

More recently a rigorous formulation of the single step

discontinuity in microstrip, such as that shown in Fig. 1,

has been published [8] and a wide variety of results pre-

sented. In this method, the portion of microstrip including

the step is enclosed by electric walls to form a resonant

cavity. By varying the length of the cavity and evaluating

the resonant frequencies, the 5’ parameters of the step can

be obtained. While this method gives good results for the

single step, it does not lend itself readily to the treatment

of cascades of strongly coupled discontinuities. This is due
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Fig. 1. (a) Microstrip cross section. (b) Plan of step discontinuity.

to the fact that the amount of computation becomes v?ry

large when a complicated metallization pattern is analyzed.

The formulation presented herein makes use of varia.

tional principles for the generalized S parameters of a
single step discontinuity. This lends itself to the treatment

of strongly interacting discontinuities by means of tha

concept of accessible and locahzed modes [9]–[1 1]. In this

approach the higher order modes excited at the discontinw

ity are treated according to their effect at the neighboring
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discontinuities. If they have a significant effect, then they

are deemed to be “accessible”; otherwise they are deemed

to be “localized.” Since there is no localized mode incident

at a discontinuity, these scattered modes are effectively

terminated in their characteristic impedances. Each discon-

tinuity is treated as a multiport device, each port corre-

sponding to an accessible mode. Likewise the microstrip

section which connects neighboring discontinuities is mod-

eled as a set of transmission lines, each carrying one

accessible mode. In this way the coupling between the

discontinuities can be accurately accounted for.

The single step discontinuity is analyzed using the

Galerkin variational method. The E field at the discon-

tinuity is expanded in the set of microstrip modes at each

side of the step and also in a suitable set of vector basis

functions appropriate to the step itself.

In order to analyze a microstrip discontinuity in this

way, it is necessary to calculate the field patterns of a large

number of rnicrostrip modes, typically 100. An efficient

method for achieving this has been presented [12], [13].

II. THE FORMULATION OF THE SINGLE STEP

DISCONTINUITY

Most formulations of the microstrip step discontinuity

make use of the equivalent circuit shown in Fig. 2, where

the element values are evaluated by quasi-static approxi-

mation. This model, however, suffers from the disad-

vantages that it is only correct in the limit of low frequency,

and that as it stands cannot be used to model strongly

coupled steps.

The formulation presented here uses the model shown in

Fig. 3. The step is represented by a multiport device with

frequency-dependent S parameters. Each port on the

model corresponds to an accessible mode, that is, a mode

which does not decay to negligible levels by the time it

reaches the next discontinuity. Combination of these S

matrices, by standard network methods, makes possible

the characterization of cascades of strongly coupled dis-

continuities (see Fig. 4). In principle, the accuracy of the

model can be systematically improved by increasing the

number of modes which are treated as accessible. In prac-

tice, however, as the number of modes deemed to be

accessible is increased, the increase in numerical error

becomes greater than the improvement from the formally
more accurate representation.

Referring to the plan of Fig. 1, we start from the

continuity equations for the transverse E and H fields,

expanded in terms of the transverse modal fields at either

side of the step:

~ ( ~$1) + ~:1) )E+) –- ~(a:’) + ZJ:2))E:2)=E(r) (1)
n n

n

where

E(r) is the transverse electric field at the discontinuity;

2 is the unit vector in the z direction;
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Fig. 3. Network model of single discontinuity.
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Fig. 4. Network model of cascaded discontinuities.

J is the current at the step;

the coefficients a represent the incident wave ampli-

tudes;

the coefficients b represent the scattered wave ampli-

tudes;

the superscripts (1) and (2) refer to the regions defined

in Fig. 1.

Note that due to the hybrid nature of the modes, there is

no simple relationship between E and H transverse. Con-
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sequently, we specify the E field and the H field sep-

arately. This contrasts with the case of simple LSE/LSM

modes, where it is possible to define a simple scalar wave

impedance linking E and H transverse.

We normalize the modes so that

where

am. = o m+n 1?mm =1

and the inner product is defined as

f
En x Hm.idS (4)

with the integral taken over the box cross sections.

By taking the inner products of each side of (1) with

each of the microstrip modes in turn we get

(E, H:’))
a;l) + &) = <qv, HJ1))

(E, H;’))
a:’) + b:’)= ~E:), ~;’)) “

To proceed we choose the inputs to the ports

following conditions:

@ =1

@ = () p+t

~j’)=o.

Substituting into (5) and (6) gives

{EJH$)) =1+~1 + @ =
(E}l), @)) “

(E, H;)) = S
b$) = (&), H})) “

(5)

(6)

to satisfy the

(7)

(8)

(9)

{E, H}))
s q=a+p (lo)bf’) = (~~), H~)) = ‘t’

where a is the number of accessible modes in region (1).

We now substitute these expressions into (2):

(E, H;z))

= ; {E:’), H;’)) H:’). (11)

Therefore

We now take inner products of both sides of this equa-

tion with E, yielding

(E, H:)) = (E, G,E) (13)

where the kernel g of the integral operator G is given by

[

H(2)(r) H:2)(r’)H@)(~) H;l)(r’) ~ n
2g(r, r’)= ~

~=1 ‘( E;l), H;l)) 1(E;2),H;’))“
(14)

Making use of (8)-(10) and the normalization given by (3),

we get the following expressions for the elements of the S

matrix:

(E>G>E)

(E, H/~)(E, fir$)) = ‘Pt
(15)

where

1
RP, =

Spr– 8P,‘
p<a

(16)

RP, =;, p>a.
pt

We expand the unknown function for the electric field

at the discontinuity in terms of a complete set of two-

dimensional vector basis funotions which satisfy the

boundary conditions:

E= x cq@q(x,Y). (17)
~=]

Substituting these expressions into (15) arid taking partial

derivatives of each side of the equation with respect to CU

(1< u < co), we obtain the following:

d + ZCq(+u, H:)){($9, H;l))Rpt(E, H$))(E, H:)) :U ,

= ~Cq(C$q,G40 (1$3)
9

Substituting for RP, we get

dRPt
— =0. (19)+( E, H;))@ >H/l)) ~c

9

From (12) we get

(@.>H}’)) = (4L>G,E) (20)

which, if substituted into (19), yields

aRpt
—=0
acu

(21)

9

The first result shows that the expressions for the elements

of the S matrix are stationary wil,h respect to small changes

in the trial field function and hence we have a variational

principle. The second result has the form of an infinite set

of simultaneous equations from which the coefficients Cq

may be calculated. Hence the field may be found from
(17). and the left half of the S matrix can be found from\—.,;
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(8)-(10). The other half of the S matrix is found by means

of a similar analysis with inputs to the ports satisfying the

conditions

& = ()

&) =1 p+t

& = o

instead of those specified in (7).

We note that (22) is the same as would have been

obtained if Galerkin’s method had been applied to (12).

This is a consequence of the fact that the operator G is

self-adjoint, which in turn is a consequence of the law of

conservation of energy.

In practice, of course, we approximate the field with a

small number of basis functions, chosen to well approxi-

mate the actual field at the discontinuity. This leads to an

efficient and accurate formulation. The form of the chosen

basis functions is discussed later.

111. CHOICE OF BASIS FUNCTIONS FOR THE STEP

In (17) we made use of a set of basis functions in which

to expand the transverse E field at the step. It is crucial

that a good choice be made here; otherwise the result will

be inaccurate. It is this aspect of Galerkin’s method, and

other methods of a similar nature, which has attracted

criticism [14]. Where it is possible, from physical consider-

ations, to know a priori the important characteristics of

the unknown function, then basis functions can be chosen

which ensure fast convergence. Such a procedure has been

used to good effect for the solution of the modes of

uniform microstrip [12] and finline [15] where the singular-

ityy of the fields at the edge of the infinitely thin strip or fin

are known exactly.

Unfortunately, for the case of the step discontinuity, it is

not obvious what the form of the fields will be. There is no

simply applicable condition, corresponding to the edge

condition at a wedge, which can be used. Possible ways of

deriving a suitable set of basis functions may involve

numerical methods to solve the static problem [16] or

making the order of the singularity at the corner of the

step a variable with respect to which we can extremize the

variational expression [17].

Various sets of basis functions which satisfy the

boundary conditions, but which incorporate no beliefs

concerning the form of the field at the step, have been

tried. In most cases, however, the result has been a very

ill-conditioned set of equations (22) from which no satis-

factory answer could be obtained.

A simple set of basis functions which can be used is the

wave patterns of Ex and Ey of the modes of the rnicrostrip

containing the wider of the two strips. These functions

meet the boundary conditions, but do not have the correct

singularity at the corner. From physical considerations,

however, it is likely that the field at the step will be similar

to the field in the wider continuous rnicrostrip. The ratio

of Ex to Ey is left as a parameter to be found during the

solution of the variational expression. If this were not

o
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Fig. 5. Convergence of S12 as basis functions increase.

done, then the higher order modes of the wider microstrip

excited by the discontinuity would be orthogonal to the

basis functions and therefore would not contribute to the

sum in (12). Fig. 5 shows the results of calculating the

phase of S12 for a step discontinuity using different num-

bers of basis functions at frequencies up to 12 GHz. It can

be seen that convergence is achieved at various frequencies

when nine basis functions are used and the ratio of the

strip widths is 4:1. While not ideal, this result means that

on] y a moderately small matrix need be handled. This

contrasts with the large matrices which result from em-

ploying mode matching methods such as [19].

In addition, numerical experiments have been carried

out using the modes of the wider strip multiplied by an

expression of the form

({&}’-x2}p

where a is the box width, w is the wider strip width, and p

is a parameter which is chosen to achieve best conver-

gence. The multiplication was carried out by taking the

convolution of the Fourier transform of the above expres-

sion, expressed in terms of Bessel functions, with the

previously calculated Fourier components of the modal

fields. By this means it was hoped to improve on the
results obtained by using the unchanged microstrip modes

as basis functions by bringing the edge behavior close to

what it really was. Results for various values of p were

obtained but the convergence showed no improvement

over that achieved using the unmodified modes.

IV. CONVERGENCE OF THE GREEN’S FUNCTION

The Green’s function, (14), is built up as an infinite sum

of the eigenmodes of the continuous microstrip. In prac-

tice, of course, it is necessary to truncate this sum after a

finite number of terms. The effect of such a truncation on

the calculated value of the equivalent circuit impedance
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Zll, defined in Section VI, is shown in Fig. 6. It can be seen

here that for accurate results it is necessary to take into

account about 100 eigenmodes each side of the step.

Examination of the geometry shows that this should be

expected. We are essentially dealing with three complete

sets of functions. Any transverse electric field pattern

which satisfies the boundary conditions may be expressed

as a linear combination of any of these sets. These are the

microstrip modes for the continuous microstrip each side

of the step and the basis functions chosen to express the

field at the step itself. Each of these sets contains singular

functions where the singularities may occur at different

places and have different strengths in each set. Clearly if

we are to express a singular function as a linear combina-

tion of a set of singular functions, when the singularities

do not coincide, we need many terms in order to obtain an

accurate representation. Thus in expressing the Green’s

function in terms of a summation of eigenmodes, many

eigenmodes must be included.

It is interesting to compare the situation existing here to

that of the analysis of uniform microstrip [12]. In the latter

case we also have a Green’s function expressed as a sum of

eigenmodes; in this case they are the eigenmodes of a

slab-loaded waveguide. Unlike the present case these func-

tions are not singular, but the microstrip modes, which are

to be expressed as a linear combination of them, do

contain a singularity. In that form, it would also be neces-

sary to take a large number of terms in order to achieve

convergence. It was possible, however, in that case to find

an asymptotic form of the expression to be summed, with

a consequent decrease in computer time. In the present

case, however, no such asymptotic form has so far been

found.

V. RESULTS FOR THE SINGLE STEP DISCONTINUITY

The S parameters for a step discontinuity calculated

using the formulation described above are shown in Figs. 7

and 8. These show the modulus and the phase, respec-

ti~ely. Also shown, in Figs. 7(b) and S(b), are the rigorous

results read from the graphs presented in [8] and results

using published quasi-static approximations [1]. It can be

seen that at low frequencies, the agreement between rigor-

ous methods and the quasi-static approximation is good,

especially for the transmission coefficient. However as the

frequency rises and we approach the cutoff frequency of

the second mode, there is considerable deviation.

In Fig. 9 we see the coupling between the dominant

mode and the first two higher order modes at the step. It

can be seen that the coupling increases almost linearly with

frequency so long as we are well below the cutoff of the

higher order modes.
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VI. NETWORK FORMULATION OF MULTIPLE

DISCONTINUITIES

In the conventional equivalent circuit model for a step

discontinuity, the parasitic effects are represented by two

series inductors and a shunt capacitor (see Fig. 2). Thh

model has the following limitations.

First, the validity of the equivalent circuit presupposes

that a characteristic impedance can be defined for micro-

strip. Because of the hybrid nature of the microstrip modes,

such a definition is unambiguous only at zero frequency.

Second, the values of the components are frequency

dependent. This fact limits the usefulness of a simple

equivalent circuit.

Third, no account is taken of the existence of higher

order modes excited by the discontinuity other than as a

means of energy storage. If we have closely spaced discon-

tinuities, then the effect of these modes will be significant.

We can circumvent the first difficulty by modeling the

longitudinal behavior of the transverse modal fields, i.e.,

the scalar amplitudes of Et and I#t, of each mode by

means of the amplitudes of the voltage V and current 1 of

an ideal transmission line having scalar characteristic im-

pedance, say unity, and with propagation constant identi-

cal to that of the microstrip mode. The effect of an isolated

step discontinuity can then be modeled by means of an

equivalent circuit, as in Fig. 2, between transmission lines

representing the fundamental mode of microstrip at either

side of the step. The second problem is a difficult one and
is as yet unsolved.

In order to overcome the third difficulty, it is possible to

model the discontinuity as a multiport device with in-built

storage elements. Such a model has previously been used

for cascades of interacting irises and steps in rectangular

waveguide [9]–[11].

The basic model is shown in Fig. 3. We split the mode

spectrum of the microstrip into “accessible” and “local-

ized” modes. The former are considered to have a signifi-

cant amplitude at the next discontinuity. These include all

the propagating modes and the first few evanescent modes.

The localized modes are considered to have decayed to

negligible amplitude at the next discontinuity y. The distinc-

tion is obviously dependent on the geometry, the frequency

of the operation, and the accuracy required.

For each accessible mode there exists an input/output

port. The microstrip which connects successive discontinu-

ities is then modeled as a set of transmission lines, One for

each transported mode, each with its own propagation

coefficient. The localized modes which are excited propa-

gate outwards from the discontinuity and do not see any

reflection; therefore they can be treated as being terminated

with a matched termination.

The complete cascade can therefore be treated as a

cascade of multiport networks connected as shown in Fig.

4. The first and last of these networks have all but the

dominant modes terminated in their characteristic imped-

ances. Once the S matrices for each discontinuity are

known and the propagation coefficients of the intervening

microstrip for each accessible’ mode is known, then the

overall S matrix can be calculated using standard methods

(e.g. [1]).

VII. RESULTS FOR THE DOUBLE STEP

DISCONTINUITY

The above method has been applied to the double step

discontinuity, the plan of which is shown in Fig. 10. For

given frequencies of 3 GHz and ‘7 GHz the input VSWR

was calculated as a function of the length of the step. The
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results are shown in Figs. 10 and 11. Here we have the

results of taking just one accessible mode, i.e., assuming

the steps have negligible coupling, and the results of taking

two accessible modes. Iri addition the results using quasi-

static formulas are shown. It can be seen that at 7 GHz the

calculated resonant length is noticeably changed when the

second accessible mode is included, thus indicating a sig-

nificant amount of coupling. At 3 GHz the results are

almost indistinguishable, implying that there is no signifi-

cant coupling. The quasi-static results are significantly

different in both cases.

VIII. APPLICATION TO A LOW-PASS FILTER

A five-section low-pass filter made up of a cascade of

microstrip step discontinuities has been analyzed using the

rigorous method, in order to see the effect of including

more than one accessible mode in the model. The geome-

try of the filter is shown in Fig. 12. It has been designed

using 50 Q input and output lines, 25 Q capacitive lines,

and 900 inductive lines. The cutoff frequency is 10 GHz.

In Fig. 12 we see the frequency response calculated by

taking one and two accessible modes into account. It can

be seen that, at high frequencies, the effect of the second

accessible mode becomes noticeable.

In order to produce Fig. 12, the steps were characterized

at 1 GHz frequency intervals and the parameters at inter-

vening frequencies were calculated using interpolation. This

produces accurate results except in the region of the cutoff

of the higher order modes, where the parameters and their

derivatives vary rapidly.

It is noted that there are only two different step discon-

tinuities contained in the filter, a step from 50 ~ to 25 Q

and a step from 25 Q to 90 !2. Once these steps have been

characterized, optimization of the filter consists of varying

only the lengths of the lines between each step. Thus for

each iteration of the optimization procedure, the only

calculations involved are those of the S parameters of the

lines and the resulting network problem. The computation-

ally more expensive rigorous analysis of the step need not

be repeated.

IX. CONCLUSIONS

A variational method for the analysis of single step

discontinuities in microstrip has been presented. By treat-

ing such a step as a multiport network, we can take

account of the scattered higher order modes when they are

of significant amplitude at a neighboring discontinuity.

Thus we are able to analyze cascades of closely spaced step

discontinuities. The results for the single step are in agree-

ment with quasi-static formulas at low frequency. Results

for the VSWR of a double step discontinuity and the

frequency response of a low-pass filter have been pre-

sented which show the effect of including the scattered

higher order modes.
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